The bacterial flagellar switch complex is getting more complex.
نویسندگان
چکیده
The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions.
منابع مشابه
Binding of the chemotaxis response regulator CheY to the isolated, intact switch complex of the bacterial flagellar motor: lack of cooperativity.
In bacteria, the chemotactic signal is greatly amplified between the chemotaxis receptors and the flagellar motor. In Escherichia coli, part of this amplification occurs at the flagellar switch. However, it is not known whether the amplification results from cooperativity of CheY binding to the switch or from a post-binding step. To address this question, we purified the intact switch complex (...
متن کاملStoichiometry and Turnover of the Bacterial Flagellar Switch Protein FliN
Some proteins in biological complexes exchange with pools of free proteins while the complex is functioning. Evidence is emerging that protein exchange can be part of an adaptive mechanism. The bacterial flagellar motor is one of the most complex biological machines and is an ideal model system to study protein dynamics in large multimeric complexes. Recent studies showed that the copy number o...
متن کاملSubunit organization and reversal-associated movements in the flagellar switch of Escherichia coli.
Bacterial flagella contain a rotor-mounted protein complex termed the switch complex that functions in flagellar assembly, rotation, and clockwise/counterclockwise direction control. In Escherichia coli and Salmonella, the switch complex contains the proteins FliG, FliM, and FliN and corresponds structurally with the C-ring in the flagellar basal body. Certain features of subunit organization i...
متن کاملPhosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria.
Regulation of the direction of flagellar rotation is central to the mechanism of bacterial chemotaxis. The transitions between counterclockwise and clockwise rotation are controlled by a "switch complex" composed of three proteins (FliG, FliM, and FliN) and located at the base of the flagellar motor. The mechanism of function of the switch is unknown. Here we demonstrate that the diffusible clo...
متن کاملGenetic and behavioral analysis of flagellar switch mutants of Salmonella typhimurium.
At the interface between the sensory transduction system and the flagellar motor system of Salmonella typhimurium, the switch complex plays an important role in both sensory transduction and energy transduction. To examine the function of the switch complex, we isolated from 10 cheY mutants 500 pseudorevertants with a suppressor mutation in one of the three genes (fliG, fliM, and fliN) encoding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 27 7 شماره
صفحات -
تاریخ انتشار 2008